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abstract. — The linear-quadratic-Gaussian (LQG) controllers are currently implemented 
at the beam-waveguide (BWG) antennas. Each BWG antenna has a different set of LQG 
coefficients, obtained by tuning and testing each controller individually. Individual coeffi-
cients for each antenna are necessary, since the antenna dynamics are not identical and the 
derivation of the LQG coefficients is a labor-intensive process. Hence, the process could be 
simplified by using single set of coefficients for all BWG antennas. The purpose of the work 
reported here is to develop a single set of servo coefficients for all BWG antennas. This is 
achieved by using the H∞ controller approach and a robust design technique. In this article, 
the analysis of the H∞ controller was performed, and the results obtained (by executing 
over 10,000 Monte Carlo simulations) showed that it is feasible to use a single set of the 
H∞ controller coefficients at all BWG antennas, and that the H∞ controller performance is 
similar to or exceeds the “standard” LQG controller performance, i.e., except for the DSS-25 
antenna controller performance. Note that the latter controller was derived exceptionally 
strong. At the remaining antennas, the controller coefficients are weaker, and they repre-
sent the “standard” LQG performance. This approach simplifies the development of the 
controller coefficients for BWG antennas, and simplifies the servo performance evaluation, 
since the performance should be similar for all six BWG antennas.  

I. Introduction

In order to achieve precise pointing, the linear-quadratic-Gaussian (LQG) controllers are 
implemented at the Deep Space Network (DSN) antennas. LQG controllers are model-based 
controllers, i.e., the control algorithm includes the antenna model. The model consists of 
equations describing the open-loop antenna dynamics. The antenna model in the control-
ler algorithm estimates antenna dynamics, in order to suppress antenna vibrations. If the 
model estimate mismatches the actual dynamics, the controller (and antenna) becomes 
unstable.

The model (antenna dynamics equations) for each of the beam-waveguide (BWG) antennas 
is derived from the field data, using the system identification procedure. Thus, for each axis, 
six models of the BWG antennas — DSS-24, DSS-25, DSS-26, DSS-34, DSS-54, and DSS-55 — 
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need to be derived. They are not identical; therefore, LQG controllers are derived individu-
ally for each antenna. In this project, a single model of antenna is used for all six antennas, 
which leads to a single set of servo coefficients for all BWG antennas. 
 
The LQG coefficients shall be derived for each antenna separately, and the derivation is 
a labor-intensive process, composed of 10 steps.1 The purpose of this article is to derive a 
single servo-coefficient set for all BWG antennas, to achieve similar or better performance 
than the current LQG controllers. This is achieved by using the H∞ controller and robust 
design technique. The H∞ control of antennas and telescopes has been deliberated for some 
time [1–4], but never actually implemented. The robust approach in the antenna controller 
design has not been yet considered. 
        
The combination of the H∞ control and robust design consists of four steps: 

(1)	 Deriving an uncertain model that spans properties of all six antennas.

(2)	 Develop an H∞ controller that is stable with the uncertain model. 

(3)	 Run Monte Carlo simulations to verify the performance of the controller. 

(4)	 Verify the H∞ controller performance with all six antennas.
  
      
II. Description of the BWG Antenna Models

The antenna model, as presented here, is a set of equations that describes the dynamics of 
the rate-loop system (i.e., antenna hardware). There are two independent models for each 
antenna — one describes the dynamics in the azimuth axis, another one in the elevation 
axis. In this article, only the azimuth models of the BWG antennas are analyzed. The de-
scription includes the model equations, magnitudes of the transfer functions, and param-
eters for each antenna model (modal damping and frequencies and their variations). 

An antenna model is a set of the following difference (state-space) equations: 
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y i
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h h h
h h

where x is the state vector n # 1^ h, u  is the rate command (deg/s), y is the antenna posi-
tion (deg), A is the state matrix, n # n^ h, B is the input matrix n # 1^ h, and C is the output 
matrix 1 # n^ h, and n  is the dimension of the model (for BWG antennas, n # 10). The state 
vector x describes antenna dynamics, and its physical meaning depends on the selection of 
coordinates. Thus, A,B,C^ h parameters characterize the antenna dynamics. 

The system identification is a method that allows one to determine the A,B,C^ h param-
eters from the antenna measured input and output data; see for example [5,6]. Hence, one 
obtains matrices A, B, and C from the field data, which is the accurate way to capture 
antenna dynamics.

1 W. Gawronski, Design Process for DSN Antenna Servo Controller Coefficients, document number 893-000045-2 (internal 
document), Jet Propulsion Laboratory, Pasadena, California, September 25, 2007.
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The rate-loop transfer function is the analytical description of the antenna response (encod-
er measurements) caused by the antenna sinusoidal rate input, at different frequencies. This 
characterization of the dynamics describes the rate-loop properties over the entire spectrum 
of frequencies within the bandwidth of interest.

The following antennas are considered: DSS-24, DSS-25, DSS-26, DSS-34, DSS-54, and 
DSS‑55. The magnitudes of the rate-loop transfer functions of the six antenna models are 
shown in Figure 1. The figure shows three modes of vibration (or resonances) in the model. 
The first two resonances are the most pronounced, while the third one is below the noise 
level; thus, it is considered insignificant in the development of the uncertain model. The 
first two resonances differ in frequency, and in resonant amplitudes (the latter depend on 
modal damping). Tables 1(a) and 1(b) show the natural frequencies ~^ h, and modal damp-
ing g^ h of the BWG antenna models, while Tables 2(a) and 2(b) show squared natural fre-
quencies X = ~2^ h, and damping d = 2g~^ h. The latter are used later in the development 
of the uncertain model.

III. Selection of the Nominal Model 

One of the six antenna models is selected as a nominal model. This model is used to derive 
the H∞ controller, and in the antenna servo coefficient file. 

The selection process is as follows. The antenna stability and performance are impacted by 
the variations of the natural frequencies and damping. Thus, a model with natural frequen-
cies and damping close to their mean values has small variations of the parameters. Any 
other model would produce larger variations. Tables 3(a) and 3(b) show the variations of 
natural frequencies and dampings from their mean, and Table 4 shows the rms values over 

Figure 1. Magnitudes of the transfer functions of six BWG antennas.
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Table 1(a). Natural frequencies (ω), rad/s.

Antenna First Mode

	 DSS-24	 12.4134	 31.3891

	 DSS-25	 12.5774	 31.0443

	 DSS-26	 12.5652	 31.3019

	 DSS-34	 12.3048	 32.1689

	 DSS-54	 12.5874	 30.5514

	 DSS-55	 12.8273	 31.0545

	 Mean	 12.5459 	 31.2517

Second Mode

Table 1(b). Modal damping (ζ).

Antenna First Mode

	 DSS-24	 0.0701	 0.0235

	 DSS-25	 0.0702	 0.0249

	 DSS-26	 0.0536	 0.0186

	 DSS-34	 0.0722	 0.0114

	 DSS-54	 0.0577	 0.0347

	 DSS-55	 0.0726	 0.0220

	 Mean	 0.0661	 0.0224

Second Mode

Table 2(a). Squared natural frequencies (Ω=ω2).

Antenna First Mode

	 DSS-24	 154.0925	 985.2756

	 DSS-25	 158.1910	 963.7486

	 DSS-26	 157.8843	 979.8089

	 DSS-34	 151.4081	 1034.8381

	 DSS-54	 158.4426	 933.3880

	 DSS-55	 164.5396	 964.3820

	 Mean	 157.4263	 976.9069

Second Mode

Table 2(b). Damping (d = 2ζω).

Antenna First Mode Second Mode

	 DSS-24	 1.7412	 1.4738

	 DSS-25	 1.7650	 1.5480

	 DSS-26	 1.3472	 1.1667

	 DSS-34	 1.7759	 0.7337

	 DSS-54	 1.4520	 2.1231

	 DSS-55	 1.8635	 1.3670

	 Mean	 1.6575	 1.4020



5

Table 3(a). Squared natural frequencies deviations from the mean.

Antenna First Mode

	 DSS-24	 –3.3338	     8.3687

	 DSS-25	   0.7647	   –13.1583

	 DSS-26	   0.4580	     2.9020

	 DSS-34	  –6.0182	    57.9312

	 DSS-54	   1.0163	   –43.5189

	 DSS-55	   7.1133	   –12.5249

Second Mode

Table 3(b). Damping deviations from the mean.

Antenna First Mode

	 DSS-24	     0.0837	     0.0718

	 DSS-25	     0.1075	     0.1460

	 DSS-26	    –0.3102	    –0.2354

	 DSS-34	     0.1184	    –0.6684

	 DSS-54	   –0.2055	     0.7210

	 DSS-55	     0.2061	    –0.0350

Second Mode

	 DSS-24	 9.0077	 0.1103

	 DSS-25*	 13.1804	 0.1813

	 DSS-26	 0.1813	 0.3894

	 DSS-34	 58.2434	 0.6788

	 DSS-54	 43.5309	 0.7497

	 DSS-55	 14.4037	 0.2090

Table 4. rms of the natural frequency and damping deviations from the mean.

Antenna RMS Value of Ω RMS Value of d

* DSS-25 selected as a nominal model.

the first two modes. The last table shows that the DSS-24, DSS-25, and DSS-26 antennas are 
the best candidates for the nominal model: their rms values are low. However, the DSS-26 
antenna was eliminated as a nominal model candidate, since it has very low damping and 
large damping variations. Hence, its magnitude of the transfer function dominates other 
antenna responses (see Figure 1, red line). The remaining two antennas, on the other hand, 
have similar transfer functions, which are placed in the middle of the remaining transfer 
functions (cf. Figure 1). Thus, DSS-25 was selected as a nominal model.
        

IV. Uncertain Gains

Uncertain gains describe maximal deviations of the uncertain parameters. Denote, for sim-
plicity of notation, X, as the square of natural frequency, i.e.,

2~X = (2)
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(3)

(4)

(5)

(6)

and d  as the damping coefficient defined as

d 2g~=

Parameters X and d  of the two first modes are the uncertain parameters of the antenna 
model.

A. Uncertain Gains of Natural Frequencies

With the above notation, the deviations (from the nominal) of the first and second natural 
frequencies are defined as

i
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i
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The uncertain gains of the natural frequencies are the maximal absolute deviations of the 
natural frequencies from the nominal model. From Table 2(a), one obtains
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B. Uncertain Gains of Natural Damping

Similarly, the deviations (from the nominal) of the first and second natural damping are 
defined as

d
d d
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d d
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The uncertain gains of the natural damping are the maximal absolute deviations of the 
natural damping from the nominal model. From Table 2(b), one obtains

0.
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5297
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The coefficients aX1,aX2,ad1,ad2 are called the uncertain gains, and are used later in the 
uncertain model.

V. Antenna Uncertain Model
        

The uncertain model has its standard form, and is described in [7], pp. 20–23 and pp. 72–
74, and [8], p. 57 and pp. 380–383. 

(7)
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(8)

(9)

A. Standard Uncertain Model

The uncertain model in this article describes all possible differences between the individual 
antennas, within the observed boundaries. In this way, a single model and single control 
coefficients can be used for all six antennas.

The uncertain model includes random parameters that span the variable properties of 
the antenna. These properties consist of the natural frequencies and damping of the first 
two flexible modes. Since the parameters spread randomly between the upper and lower 
bounds, the Monte Carlo analysis shall show the performance of almost all possible varia-
tions of antenna properties with a single set of servo coefficients.

In order to use it in the Matlab environment for the evaluation of the antenna perfor-
mance, the uncertain model has to have a certain structure, as defined by the H∞ controller 
design procedure (see [7], pp. 20–23 and pp. 72–74, and [8], p. 57 and pp. 380–383. This 
structure, called the standard uncertainty model, is shown in Figure 2. In this figure, G  rep-
resents the nominal model and D  is the parametric uncertain model that describes param-
eter variations. The uncertain block D  is a diagonal matrix:

0

0
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d

D =

R

T

S
S
SS

V

X

W
W
WW

with the uncertain (random) parameters di varying within the interval [–1, 1]

1 1i !d -6 @

Figure 2. Standard configuration of an uncertain model: ∆ is a matrix of  

random variables spanning the interval  [–1   1].

u y

p q

∆

G

Thus, the six BWG antennas are represented by a single (uncertain) model, shown above. In 
order to obtain this model, first an uncertain model for a single flexible mode is derived.
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(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

B. Uncertain Model Equations for a Single Mode

The equation of a single mode is as follows:

x

x d

x

x b
u

0 1 0

u

1

2

1

2X
=
- -

+
o

o
; ;E E' '1 1

The square of the uncertain natural frequency X^ h is as follows:

1nom a dX X= + X X^ h

and the uncertain damping coefficient d^ h is as follows:

d d 1nom d da d= +^ h

where Xnom,dnom are nominal values of the natural frequency and damping, aX,ad are un-
certain gains, and dX,dd  are uncertain spreads, respectively, with 
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In this way, the natural frequencies and damping vary between the maximal and minimal 
values, as measured for the BWG antennas.

Thus, the uncertain single-mode equation is as follows (the subscript nom is skipped for 
simplicity):

x

x d
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Denoting
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one can rewrite Equation (14) as follows:

x Ax B u
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i.e.,
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(10)
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 (22)

 (23)

(24)

(25)

(26)

In this way, Equation (18) is now

px Ax B u B qu D= + +o  

where

p ,B q
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Note that p is the feedback, as in Figure 1:

p qD=

where p =
p1

p2
' 1, therefore

px Ax B u B pu= + +o

and 

qq C x=
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C
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with the system output defined as follows

,y Cx C 0 1= = 6 @

In summary, Equations (22–24) and (26) describe the uncertain mode model, and are col-
lected as follows:
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where the matrices in the above equations are as follows:
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and the variables are
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x
y x
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C. Uncertain Model Equations for the Antenna

Based on the single-mode analysis, the antenna uncertain equations, with two uncertain 
modes, are as follows:

p
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(where # denotes a nonzero value of the nominal model), and
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while the uncertain inputs and outputs are 
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The uncertainty matrix is in the standard form 
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The closed-loop equation in an explicit form, for the system as in Figure 2, is as follows:
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where for the azimuth model
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One sees that the natural frequencies vary up to 7 percent, while damping up to 53 percent.

Combining Equation (27) gives

p px A B C
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x B B D uq
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The above system is in a standard robust representation [7], and is illustrated as in Figure 3, 
which is a detail representation of the standard form from Figure 2.

and
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Figure 4. Upper and lower bounds of the magnitude of the transfer function of the uncertain model. 

D. Upper and Lower Bounds of the Nominal Model

For the above equations, the Matlab code generated the nominal, and upper and lower 
bounds, of the transfer function of the uncertain model, which are shown in Figure 4.

This model will be used in the development of the robust controller for the BWG antennas.

VI. The H∞ Controller Design

A typical approach to the robust design of the H∞ controller is to use the µ synthesis proce-
dure with D-K iterations; see, for example, [7]. However, the µ synthesis was tried, and did 

Figure 3. Block diagram of the antenna uncertain model.
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not work successfully for the BWG antenna model. It did not converge successfully. As it 
was also observed in [7] (p. 222), “the uncertainties of resonant modes would make the D-K 
iterations difficult to converge. This confirms that the resonant modes may create difficul-
ties in the controller design.” Thus, for the antenna purposes instead of µ synthesis, the H∞ 
design method presented in [9] was used, and the uncertainty of the antenna model was 
tested using the Monte Carlo iterations.
 

A. Short Description of the Design Process

The design process for the H∞ controller is described in [9]. The block diagram for the H∞ 
controller is presented in Figure 5. The closed-loop equations are presented for the control-
ler as in Figure 5. From this figure, they are as follows:

x A x B r B w

y C x D w

z C x D u

cl cl cl cl w
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1 21

= + +

= +
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o

where the closed-loop state xcl^ h consists of the integral of the antenna position ei^ h, the 
antenna state x^ h, and the estimator state tx^ h, i.e.,
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The corresponding closed-loop state matrices are as follows:
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The matrix Kc is the controller gain, while Ke is the estimator gain. The controller gain is 
obtained as follows:

3K B Sc
T

c2=

while the estimator gain is given as

3
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e o e
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o e c
2t

=
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The matrices S3c and S3e in the gain equations are obtained from the Riccati equations, 
namely:

S3c is the solution of the H∞ controller Riccati equation (HCARE)

3 3 3 3S A A S C C S B B B B S 0c
T

c
T

c
T T

c1 1 2 2
2
1 1t+ + - - =-^ h

(38)

(39)

(40)

(41)

(42)   

(43)  

(44)
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Figure 5. An H∞ controller structure.
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S3e is the solution of the H∞ estimator Riccati equation (HFARE)

3 3 3 3S A AS B B S C C C C S 0e
T

e e
T T

e
T

1 1 2 2
2
1 1t+ + - - =-^ h

and the above solutions must satisfy the following inequality: 

3 3S Smax ec
21m t^ h

where mmax S3cS3e^ h is the largest eigenvalue of S3cS3e, and t is the parameter in Equa-
tions (44) and (45).

B. Simulation of the H∞ Controller Performance

Using the DSS-25 antenna (azimuth) model and the above approach, the H∞ controller has 
been derived. Its performance is described by

(46)

(45)
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(1)	 The step response, shown in Figure 6. From the step response, the settling time is 
4.9 s, and overshoot is 16 percent. 

(2)	 The magnitude of the closed-loop transfer function is shown in Figure 7. From 
this plot, the bandwidth is 0.43 Hz. 

Figure 6. Step response of the DSS-25 H∞ controller: settling time 4.9 s, overshoot 16 percent.
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Figure 7. Magnitude of the DSS-25 closed-loop transfer function (bandwidth = 0.43 Hz).
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(3)	 The servo error in 20 mph wind gusts was simulated, and the result is shown in 
Figure 8. The plot shows the rms servo error of 0.17 mdeg. 

The performance is summarized in Table 5, and is compared with the existing LQG control-
lers in Table 6. One can see that the H∞ controller performance is similar or exceeds the LQG 
controller performance (except for the DSS-25 antenna, which LQG controller was designed 
exceptionally strong).
     

Table 5. Performance of the H∞ controller.

Performance Parameter Performance

	 Settling time	 4.9 s

	 Overshoot	 16 percent

	 Bandwidth	 0.43 Hz

	 rms servo error	 0.17 mdeg

Settling time, s

Table 6. A comparison of the performance of the current LQG controllers  

and the H∞ controller.

Antenna 

	 DSS-24	 8.2	 16

	 DSS-25	 3.8	 15

	 DSS-26	 7.5	 18

	 DSS-34	 5.1	 17	

	 DSS-54	 8.0	 20

	 DSS-55	 5.9	 16

	 H∞	 4.9	 16

Overshoot, percent

Figure 8. Servo error in 20-mph wind gusts.
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VII. Closed-Loop Performance Evaluation Using Monte Carlo Simulations

The block diagram of the closed-loop system with the parameter variations D that span the 
variable parameter range of all BWG antennas is shown in Figure 9. The performance of 
the BWG antennas is simulated using the H∞ controller obtained for the DSS-25 antenna, 
and varying randomly the gains in matrix D that represent the antenna model uncertainty. 
Over 10,000 Monte Carlo simulations have been performed to evaluate the performance 
over the parameter variation span. 

u

w z

r

y

p q

∆

G

K

Figure 9. The H∞ closed-loop system with uncertain antenna model: G – nominal plant, K – H∞ controller,  

D – matrix of random variables that model the antenna uncertainty, µ – velocity input,  

w – disturbances, y – encoder, and  z – servo error.

Before reviewing the results, the open-loop transfer function with all modeled uncertainties 
is shown in Figure 10 (10,000 deviations for each frequency). 

Figure 10. Open-loop magnitude of transfer function with uncertain deviations: black line – nominal model,  

red dots – model variations (10,000 for each frequency).
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Next, the closed-loop performance using the Monte Carlo approach was simulated. The 
results are shown in Figures 11(a)–(d). One can see that the system is stable for all allow-
able deviations of antenna parameters. The resulting deviations in the step responses, 
Figure 11(a), from the nominal model are small, as well as the deviations in the disturbance 
step responses, Figure 11(b), magnitudes of the transfer function, Figure 11(c), and magni-
tudes of the disturbance transfer functions, Figure 11(d). Thus, the controller performance 
should satisfy the requirements at all BWG antennas.
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Figure 11(a). Closed-loop step response with uncertain deviations: black line – nominal model,  

red dots – model variations (10,000 for each time instant).

Figure 11(b). Closed-loop disturbance step response with uncertain deviations: black line – nominal model,  

red dots – model variations (10,000 for each time instant).
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Figure 11(c). Closed-loop magnitude of transfer function with uncertain deviations: black line – nominal model,  

red dots – model variations (10,000 for each frequency).

Figure 11(d). Closed-loop magnitude of disturbance transfer function with uncertain deviations: 

black line – nominal model, red dots – model variations (10,000 for each frequency).

In order to check it, the H∞ controller from the DSS-25 antenna was applied to all six an-
tennas. The results are shown in Figures 12(a)–(d). The plots show that the antennas are 
stable, and their performance is close to the nominal model performance that satisfies the 
requirements.
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Figure 12(a). The H∞ closed-loop step responses of the BWG antennas. 

Figure 12(b). The H∞ closed-loop disturbance step responses of the BWG antennas. 
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Figure 12(d). Magnitudes of the H∞ closed-loop disturbance transfer function of the BWG antennas. 

Figure 12(c). Magnitudes of the H∞ closed-loop transfer function of the BWG antennas. 
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VIII. Conclusions 

The analysis and the results of over 10,000 Monte Carlo simulations showed that a single 
set of the H∞ controller could be used for all BWG antennas. The H∞ controller performance 
is similar or exceeds the existing LQG controllers, except for the DSS-25 antenna controller. 
Note that the latter controller was derived exceptionally strong and is stable at the DSS-25 
antenna. At the remaining antennas, the controller coefficients are weaker, and represent 
the “standard” LQG performance.
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